Package index
-
DDM() - The Diffusion Decision Model
-
LBA() - The Linear Ballistic Accumulator model
-
LNR() - The Log-Normal Race Model
-
RDM() - The Racing Diffusion Model
-
DDMGNG() - The GNG (go/nogo) Diffusion Decision Model
-
SDT() - Gaussian Signal Detection Theory Model for Binary Responses
-
design() - Specify a Design and Model
-
mapped_pars() - Parameter Mapping Back to the Design Factors
-
sampled_pars() - Get Model Parameters from a Design
-
plot_design() - Plot Design
-
plot(<emc.design>) - Plot method for emc.design objects
-
summary(<emc.design>) - Summary method for emc.design objects
-
get_design() - Get Design
-
group_design() - Create Group-Level Design Matrices
-
prior() - Specify Priors for the Chosen Model
-
summary(<emc.prior>) - Summary method for emc.prior objects
-
plot(<emc.prior>) - Plot a prior
-
predict(<emc.prior>)predict(<emc>) - Generate Posterior/Prior Predictives
-
get_prior() - Get Prior
-
prior_help() - Prior Specification Information
-
credint() - Posterior Quantiles
-
init_chains() - Initialize Chains
-
make_emc() - Make an emc Object
-
fit() - Model Estimation in EMC2
-
run_emc() - Fine-Tuned Model Estimation
-
check() - Convergence Checks for an emc Object
-
summary(<emc>) - Summary Statistics for emc Objects
-
credint() - Posterior Quantiles
-
ess_summary() - Effective Sample Size
-
gd_summary() - Gelman-Rubin Statistic
-
chain_n() - MCMC Chain Iterations
-
plot(<emc>) - Plot Function for emc Objects
-
pairs_posterior() - Plot Within-Chain Correlations
-
credint() - Posterior Quantiles
-
parameters() - Return Data Frame of Parameters
-
get_pars() - Filter/Manipulate Parameters from emc Object
-
plot_pars() - Plots Density for Parameters
-
plot_relations() - Plot Group-Level Relations
-
merge_chains() - Merge Samples
-
subset(<emc>) - Shorten an emc Object
-
auto_thin() - Automatically Thin an emc Object
-
predict(<emc.prior>)predict(<emc>) - Generate Posterior/Prior Predictives
-
recovery() - Recovery Plots
-
make_data() - Simulate Data
-
make_random_effects() - Generate Subject-Level Parameters
-
get_data() - Get Data
-
profile_plot() - Likelihood Profile Plots
-
plot_density() - Plot Defective Densities
-
plot_cdf() - Plot Defective Cumulative Distribution Functions
-
plot_stat() - Plot Statistics on Data
-
compare() - Information Criteria and Marginal Likelihoods
-
compare_subject() - Information Criteria For Each Participant
-
model_averaging() - Model Averaging
-
run_bridge_sampling() - Estimating Marginal Likelihoods Using WARP-III Bridge Sampling
-
get_BayesFactor() - Bayes Factors
-
credible() - Posterior Credible Interval Tests
-
hypothesis() - Within-Model Hypothesis Testing
-
contr.anova() - Anova Style Contrast Matrix
-
contr.bayes() - Contrast Enforcing Equal Prior Variance on each Level
-
contr.decreasing() - Contrast Enforcing Decreasing Estimates
-
contr.increasing() - Contrast Enforcing Increasing Estimates
-
plot_sbc_ecdf() - Plot the ECDF Difference in SBC Ranks
-
plot_sbc_hist() - Plot the Histogram of the Observed Rank Statistics of SBC
-
run_sbc() - Simulation-Based Calibration
-
MRI() - GLM model for fMRI data
-
MRI_AR1() - Create an AR(1) GLM model for fMRI data
-
convolve_design_matrix() - Convolve Events with HRF to Construct Design Matrices
-
design_fmri() - Create fMRI Design for EMC2 Sampling
-
high_pass_filter() - Apply High-Pass Filtering to fMRI Data
-
plot_design_fmri() - Plot fMRI Design Matrix
-
plot_fmri() - Plot fMRI peri-stimulus time courses
-
reshape_events() - Reshape events data for fMRI analysis
-
split_timeseries() - Split fMRI Timeseries Data by ROI Columns
-
make_trend() - Create a trend specification for model parameters
-
trend_help() - Get help information for trend kernels and bases
-
get_trend_pnames() - Get parameter types from trend object
-
align_loadings() - Reorder MCMC Samples of Factor Loadings
-
cut_factors() - Cut Factors Based on Credible Loadings
-
factor_diagram() - Factor diagram plot #Makes a factor diagram plot. Heavily based on the fa.diagram function of the
psychpackage.
-
update2version() - Update EMC Objects to the Current Version
-
forstmann - Forstmann et al.'s Data
-
samples_LNR - LNR Model of Forstmann Data (First 3 Subjects)