Package index
-
DDM()
- The Diffusion Decision Model
-
LBA()
- The Linear Ballistic Accumulator model
-
LNR()
- The Log-Normal Race Model
-
RDM()
- The Racing Diffusion Model
-
fit()
- Model estimation in EMC2
-
design()
- Specify a design and model
-
make_emc()
- Make an emc object
-
init_chains()
- Initialize chains
-
run_emc()
- Custom function for more controlled model estimation
-
mapped_par()
- Parameter mapping back to the design factors
-
sampled_p_vector()
- Get model parameters from a design
-
profile_plot()
- Likelihood profile plots
-
plot_defective_density()
- Plot defective densities for each subject and cell
-
check()
- Convergence checks for an emc object
-
summary(<emc>)
- Summary statistics for emc objects
-
ess_summary()
- Effective sample size
-
gd_summary()
- Gelman-Rubin statistic
-
chain_n()
- chain_n()
-
plot(<emc>)
- Plot function for emc objects
-
pairs_posterior()
- Plot within-chain correlations
-
posterior_summary()
- Posterior quantiles
-
parameters()
- Returns a parameter type from an emc object as a data frame.
-
get_pars()
- Filter/manipulate parameters from emc object
-
plot_pars()
- Plots density for parameters
-
plot_relations()
- Plot relations
-
merge_chains()
- Merge samples
-
subset(<emc>)
- Shorten an emc object
-
predict(<emc>)
- Generate posterior predictives
-
plot_fit()
- Posterior predictive checks
-
make_data()
- Simulate data
-
make_random_effects()
- Make random effects
-
recovery()
- Recovery plots
-
get_data()
- Get data
-
compare()
- Information criteria and marginal likelihoods
-
compare_subject()
- Information criteria for each participant
-
run_bridge_sampling()
- Estimating Marginal likelihoods using WARP-III bridge sampling
-
get_BayesFactor()
- Bayes Factors
-
credible()
- Posterior credible interval tests
-
hypothesis()
- Within-model hypothesis testing
-
plot_prior()
- Title
-
prior()
- Prior specification
-
contr.anova()
- Anova style contrast matrix
-
contr.bayes()
- Contrast to enforce equal prior variance on each level
-
contr.decreasing()
- Contrast to enforce decreasing estimates
-
contr.increasing()
- Contrast to enforce increasing estimates
-
plot_sbc_ecdf()
- Plot the ECDF difference in SBC ranks
-
plot_sbc_hist()
- Plot the histogram of the observed rank statistics of SBC
-
run_sbc()
- Simulation-based calibration
-
forstmann
- Forstmann et al.'s data
-
samples_LNR
- An emc object of an LNR model of the Forstmann dataset using the first three subjects