Skip to contents

Models

DDM()
The Diffusion Decision Model
LBA()
The Linear Ballistic Accumulator model
LNR()
The Log-Normal Race Model
RDM()
The Racing Diffusion Model

Design and Mapping

design()
Specify a Design and Model
mapped_pars()
Parameter Mapping Back to the Design Factors
sampled_pars()
Get Model Parameters from a Design
plot_design()
Plot Design
plot(<emc.design>)
Plot method for emc.design objects
summary(<emc.design>)
Summary method for emc.design objects
get_design()
Get Design

Prior Specification

prior()
Specify Priors for the Chosen Model
summary(<emc.prior>)
Summary method for emc.prior objects
plot(<emc.prior>)
Plot a prior
predict(<emc.prior>) predict(<emc>)
Generate Posterior/Prior Predictives
get_prior()
Get Prior
prior_help()
Prior Specification Information
credint()
Posterior Quantiles

Estimation

init_chains()
Initialize Chains
make_emc()
Make an emc Object
fit()
Model Estimation in EMC2
run_emc()
Custom Function for More Controlled Model Estimation

Model checking

check()
Convergence Checks for an emc Object
summary(<emc>)
Summary Statistics for emc Objects
credint()
Posterior Quantiles
ess_summary()
Effective Sample Size
gd_summary()
Gelman-Rubin Statistic
chain_n()
MCMC Chain Iterations
plot(<emc>)
Plot Function for emc Objects
pairs_posterior()
Plot Within-Chain Correlations

Posterior Inference

credint()
Posterior Quantiles
parameters()
Return Data Frame of Parameters
get_pars()
Filter/Manipulate Parameters from emc Object
plot_pars()
Plots Density for Parameters
plot_relations()
Plot Group-Level Relations
merge_chains()
Merge Samples
subset(<emc>)
Shorten an emc Object
auto_thin()
Automatically Thin an emc Object

Data Generation and Recovery

predict(<emc.prior>) predict(<emc>)
Generate Posterior/Prior Predictives
recovery()
Recovery Plots
make_data()
Simulate Data
make_random_effects()
Generate Subject-Level Parameters
get_data()
Get Data
profile_plot()
Likelihood Profile Plots

Model Fit

plot_density()
Plot Defective Densities
plot_cdf()
Plot Defective Cumulative Distribution Functions
plot_stat()
Plot Statistics on Data

Model Comparison

compare()
Information Criteria and Marginal Likelihoods
compare_subject()
Information Criteria For Each Participant
model_averaging()
Model Averaging
run_bridge_sampling()
Estimating Marginal Likelihoods Using WARP-III Bridge Sampling
get_BayesFactor()
Bayes Factors
credible()
Posterior Credible Interval Tests
hypothesis()
Within-Model Hypothesis Testing

Contrasts

contr.anova()
Anova Style Contrast Matrix
contr.bayes()
Contrast Enforcing Equal Prior Variance on each Level
contr.decreasing()
Contrast Enforcing Decreasing Estimates
contr.increasing()
Contrast Enforcing Increasing Estimates

Simulation-based calibration

plot_sbc_ecdf()
Plot the ECDF Difference in SBC Ranks
plot_sbc_hist()
Plot the Histogram of the Observed Rank Statistics of SBC
run_sbc()
Simulation-Based Calibration

miscellaneous

update2version()
Update EMC Objects to the Current Version

Included data

forstmann
Forstmann et al.'s Data
samples_LNR
LNR Model of Forstmann Data (First 3 Subjects)