Typical contrasts impose different levels of marginal prior variance for the different levels. This contrast can be used to ensure that each level has equal marginal priors (Rouder, Morey, Speckman, & Province; 2012).
Examples
{
design_DDMaE <- design(data = forstmann,model=DDM, contrasts = list(E = contr.bayes),
formula =list(v~S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))
}
#> Parameter(s) st0 not specified in formula and assumed constant.
#>
#> Sampled Parameters:
#> [1] "v" "v_Sright" "a" "a_E1" "a_E2" "t0" "Z"
#> [8] "sv" "SZ"
#>
#> Design Matrices:
#> $v
#> S v v_Sright
#> left 1 0
#> right 1 1
#>
#> $a
#> E a a_E1 a_E2
#> speed 1 0.0000000 0.8164966
#> neutral 1 -0.7071068 -0.4082483
#> accuracy 1 0.7071068 -0.4082483
#>
#> $t0
#> t0
#> 1
#>
#> $s
#> s
#> 1
#>
#> $Z
#> Z
#> 1
#>
#> $sv
#> sv
#> 1
#>
#> $SZ
#> SZ
#> 1
#>
#> $st0
#> st0
#> 1
#>